A SAS/IML software program for GEE and regression diagnostics

نویسندگان

  • Bradley G. Hammill
  • John S. Preisser
چکیده

A SAS/IML software program is described that computes regression diagnostics for generalized estimating equations. These diagnostics are computationally efficient and accurate approximations for the effect of deleting one observation or one cluster on individual regression coefficients (DFBETA) or on the overall fit of the model (Cook’s Distance). New formulae for the diagnostics are presented which are equivalent to those introduced by Preisser and Qaqish [1996. Deletion diagnostics for generalised estimating equations. Biometrika 83, 551–562]. The new formulae expose the relationships of the diagnostic measures to the GEE score equations and to a bias-corrected GEE variance estimator which is also implemented in the SAS macro. The macro is applied to three clustered data sets. © 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

State Space Modeling Using SAS

This article provides a brief introduction to the state space modeling capabilities in SAS, a well-known statistical software system. SAS provides state space modeling in a few different settings. SAS/ETS, the econometric and time series analysis module of the SAS system, contains many procedures that use state space models to analyze univariate and multivariate time series data. In addition, S...

متن کامل

Robust Standard Error Estimate for Cluster Sampling Data: A SAS/IML Macro Procedure for Logistic Regression with Huberization

Data sets with cluster structure are very common in practical business and research, one has to take into account the intra-cluster correlation in data analysis. This paper systematically discusses the Huber/White standard error estimate for cluster sampling data in logistic regression, and presents a user-friendly SAS/IML macro procedure which can automatically fit logistic model, calculate ro...

متن کامل

Parameter Estimation in Logistic Regression for Transition, Reverse Transition and Repeated Transition from Repeated Outcomes

Covariate dependent Markov models dealing with estimation of transition probabilities for higher orders appear to be restricted because of over-parameterization. An improvement of the previous methods for handling runs of events by expressing the conditional probabilities in terms of the transition probabilities generated from Markovian assumptions was proposed using Chapman-Kolmogorov equation...

متن کامل

A SAS/IML Macro for Goodness-of-Fit Testing in Logistic Regression Models with Sparse Data

The logistic regression model has become the standard analyzing tool for binary responses in a variety of disciplines. Methods for assessing goodness-of-fit, however, are less developed and this is especially pronounced in calculating goodness-of-fit tests with sparse data, when the standard tests (deviance and Pearson test) behave unsatisfactorily. In our paper we show two solutions to the pro...

متن کامل

Multidimensional arrays in SAS/IML Software

This paper describes a data structure and a set of SAS/IML modules for handling multidimensional arrays in a flexible way. The data structure provides variable names and labels for the levels of the table for all dimensions, along with the table data. The processing modules ilustrate: Generalized transpose of a multidimensional array, as in APL. Applying a reduction operation over specified coo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2006